(+) **18816996168**Ponciplastics. com

CELANEX® 2300 GV1/30 ECO-B

general purpose, 30% glass-fiber reinforced grade, lubricated and stabilized, with partially bio-based PBT Chemical abbreviation according to ISO 1043-1: PBT Moulding compound ISO 7792- PBT, MGHR, 08-100N, GF30 Polybutylene terephthalate, 30 % glass fibre reinforced.

- Celanex ECO-B is a PBT with the same properties and performance as standard grades, but produced with sustainability in mind.
- Using a mass-balance approach, 40% of biogenic feedstocks are used to offset the use of fossil-based raw materials and decrease greenhouse gas emissions in the production of the PBT base resin.
- The process will be audited and certified according to the REDcert mass balance approach.

Product information

Part Marking Code	> PBT-GF30 <	ISO 11469

Rheological properties

9 cm ³ /10min	ISO 1133
250 °C	
2.16 kg	
78 cm ³ /g	ISO 307, 1157, 1628
0.3 - 0.4 %	ISO 294-4, 2577
1.0 - 1.2 %	ISO 294-4, 2577
	2.16 kg 78 cm³/g 0.3 - 0.4 %

Typical mechanical properties

Tensile Modulus	10300	MPa	ISO 527-1/-2
Stress at break, 5mm/min	150	MPa	ISO 527-1/-2
Strain at break, 5mm/min	2.5	%	ISO 527-1/-2
Flexural Strength	210	MPa	ISO 178
Tensile creep modulus, 1h	9200	MPa	ISO 899-1
Tensile creep modulus, 1000h	6500	MPa	ISO 899-1
Charpy impact strength, 23°C	60	kJ/m ²	ISO 179/1eU
Charpy impact strength, -30°C	60	kJ/m ²	ISO 179/1eU
Charpy notched impact strength, 23°C	9.5	kJ/m ²	ISO 179/1eA
Charpy notched impact strength, -30°C	9	kJ/m ²	ISO 179/1eA
Ball indentation hardness, H 358/30	215	MPa	ISO 2039-1

Thermal properties

Melting temperature, 10°C/min	225	°C	ISO 11357-1/-3
Temp. of deflection under load, 1.8 MPa	210	°C	ISO 75-1/-2
Temp. of deflection under load, 0.45 MPa	225	°C	ISO 75-1/-2
Temp. of deflection under load, 8 MPa	150	°C	ISO 75-1/-2
Vicat softening temperature, 50°C/h, 50N	220	°C	ISO 306
Coeff. of linear therm. expansion, parallel	25	E-6/K	ISO 11359-1/-2
Thermal conductivity of melt	0.166	W/(m K)	Internal
Spec. heat capacity of melt	1720	J/(kg K)	Internal

(+) **18816996168**Ponciplastics. com

Internal

CELANEX® 2300 GV1/30 ECO-B

Flammability

Burning Behav. at 1.5mm nom. thickn.	HB class	UL 94
Thickness tested	1.5 mm	UL 94
Burning Behav. at thickness h	HB class	UL 94
Thickness tested	1.00 mm	UL 94
Oxygen index	20 %	ISO 4589-1/-2

Electrical properties

Relative permittivity, 100Hz	4.4	IEC 62631-2-1
Relative permittivity, 1MHz	4.3	IEC 62631-2-1
Dissipation factor, 100Hz	20 E-4	IEC 62631-2-1
Dissipation factor, 1MHz	190 E-4	IEC 62631-2-1
Volume resistivity	>1E13 Ohm.m	IEC 62631-3-1
Surface resistivity	>1E15 Ohm	IEC 62631-3-2
Electric strength	33 kV/mm	IEC 60243-1
Comparative tracking index	PLC 1 PLC	UL 746A

Other properties

Humidity absorption, 2mm	0.15 %	Sim. to ISO 62
Water absorption, 2mm	0.4 %	Sim. to ISO 62
Density	1550 kg/m³	ISO 1183
Density of melt	1320 kg/m³	Internal

Injection

Drying Temperature	120 - 140 °C
Drying Time, Dehumidified Dryer	2-4 h
Processing Moisture Content	0.02 %
Screw tangential speed	0.12 - 0.17 m/s
Max. mould temperature	75 - 100 °C
Injection speed	fast
Eiection temperature	220 °C

Characteristics

Additives Release agent, Biobased

Additional information

Injection molding Melt Temperature 260-270 °C

Mold Temperature *) 75-85 °C

Maximum Barrel Residence Time **) 5-10 min

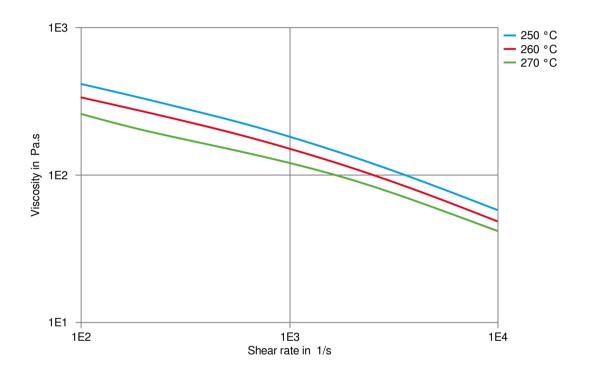
Injection Speed fast

Peripheral screw speed max.0,3 m/sec

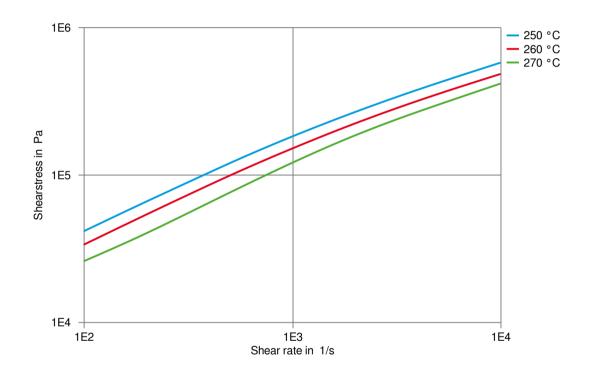
Back Pressure 10-30 bar Injection Pressure 600-1000 bar

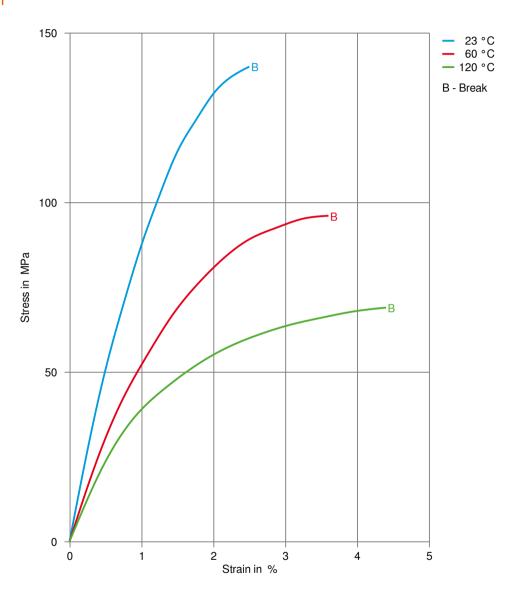
Holding Pressure 400-800 bar Nozzle Design open design preferred

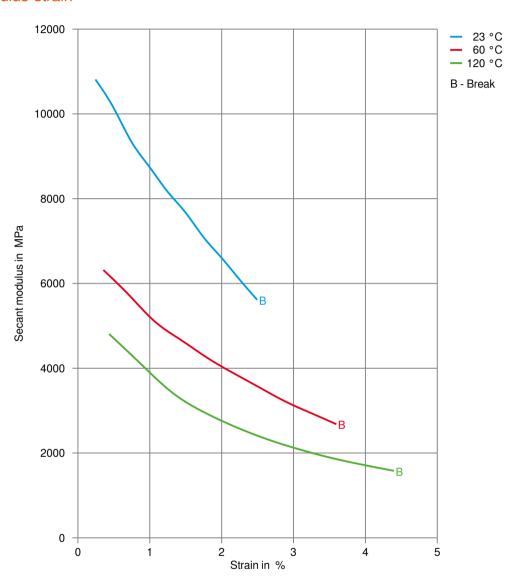
Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided. For grades containing flame retardants, a maximum temperature of 265 °C should not be exceeded. Up to 25% clean and dry regrind may be used.

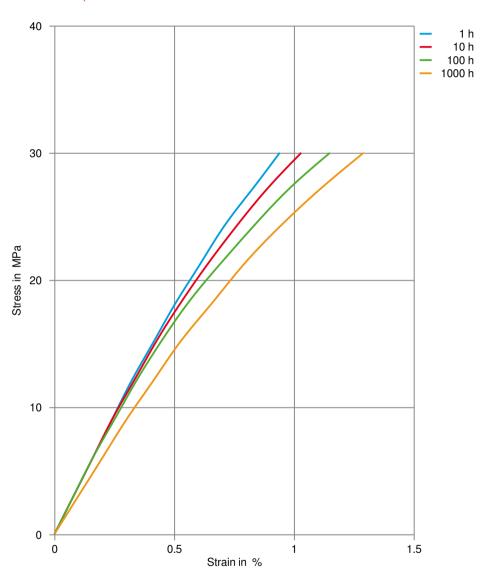

Celanese recommends only externally heated hot runner systems.

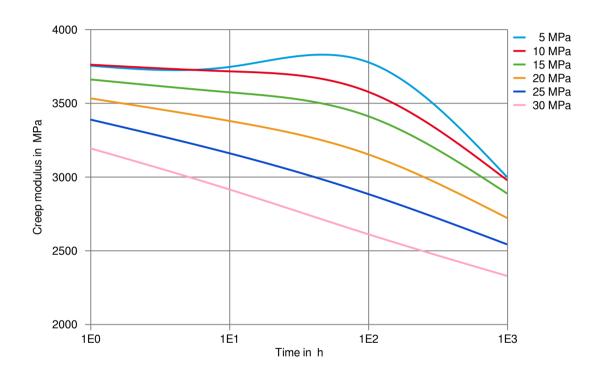
- *) For moulded parts with especially high requirements to the surface quality or dimensional stability, a mold temperature of up to 110 °C can be advantageous.
- **) If the cylinder temperatures are higher than the recommended maximum temperatures, the max. residence time in the barrel has to be reduced.

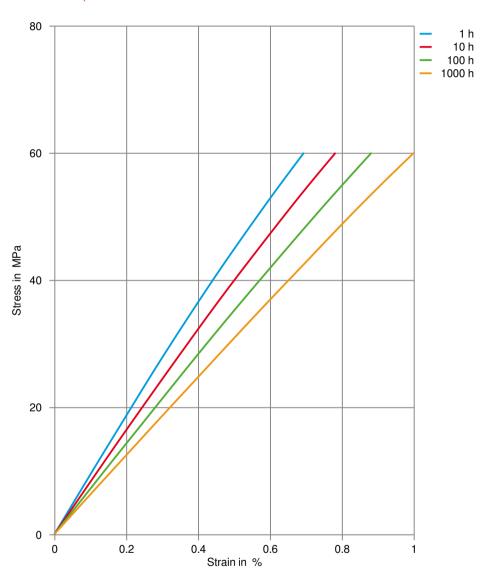

Viscosity-shear rate


Shearstress-shear rate

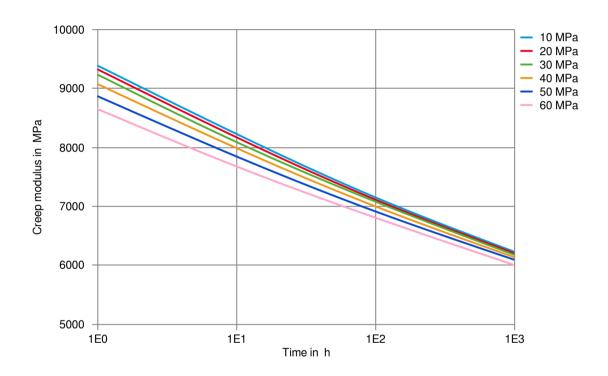

Stress-strain


Secant modulus-strain


Stress-strain (isochronous) 100°C

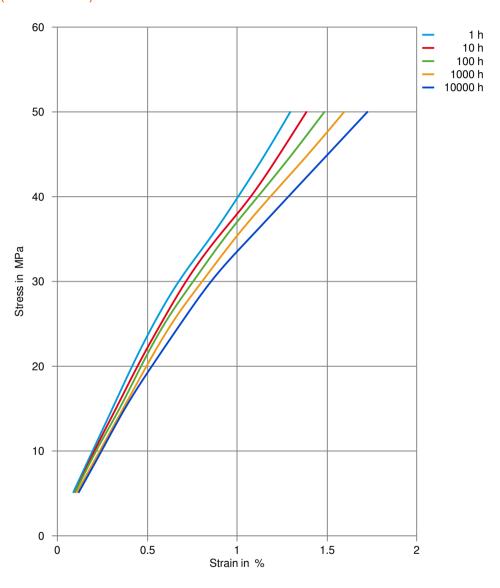

Creep modulus-time 100°C

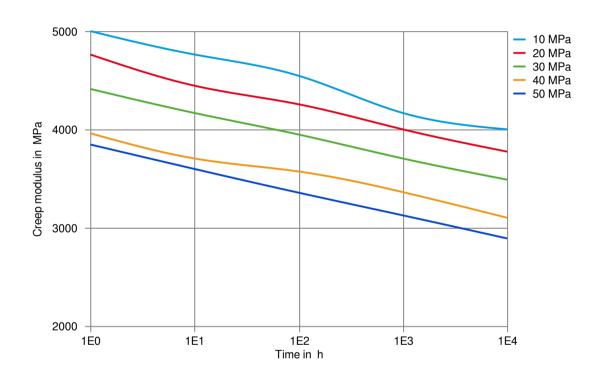
Stress-strain (isochronous) 23°C

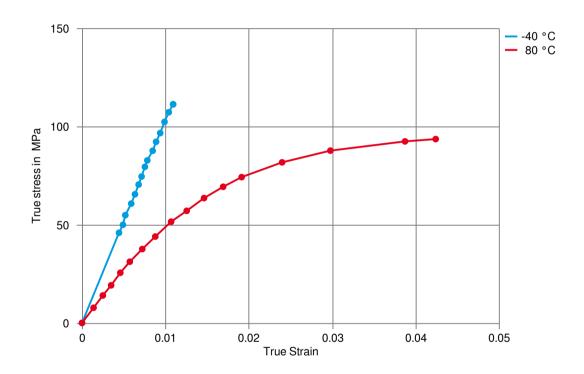


(+) **18816996168**Ponciplastics. com

CELANEX® 2300 GV1/30 ECO-B


Creep modulus-time 23°C


Stress-strain (isochronous) 60°C


Creep modulus-time 60°C

True stress-strain

(+) 18816996168 Ponciplastics.com

CELANEX® 2300 GV1/30 ECO-B

Processing Texts

Pre-drying

CELANEX should in principle be predried. Because of the necessary low maximum residual moisture content the use of dry air dryers is recommended. The dew point should be =< - 30° C. The time between drying and processing should be as short as possible.

Longer pre-drying times/storage

For subsequent storage of the material in the dryer until processed (\leq 60 h) it is necessary to lower the temperature to 100 ° C.

Injection molding

Melt Temperature 260-270 °C
Mold Temperature *) 75-85 °C
Maximum Barrel Residence Time **) 5-10 min
Injection Speed fast
Peripheral screw speed max.0,3 m/sec
Back Pressure 10-30 bar
Injection Pressure 600-1000 bar
Holding Pressure 400-800 bar
Nozzle Design open design preferred

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided. For grades containing flame retardants, a maximum temperature of 265 °C should not be exceeded. Up to 25% clean and dry regrind may be used.

Celanese recommends only externally heated hot runner systems.

- *) For moulded parts with especially high requirements to the surface quality or dimensional stability, a mold temperature of up to 110 °C can be advantageous.
- **) If the cylinder temperatures are higher than the recommended maximum temperatures, the max. residence time in the barrel has to be reduced.

Injection molding Preprocessing

To avoid hydrolytic degradation during processing, CELANEX resins have to be dried to a moisture level equal to or less than 0,02%. The drying should be done in a dry-air dryer (dew point < -30 °C) with a temperature of 120 to 140 °C and a drying time of 2 to 4 hours. In case of longer residence times in the dry-air dryer, the temperature should be reduced to 100 °C.

The time between drying and processing should be kept as short as possible. The processing machine feed hopper should be closed during the processing operation.